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Semianalytical approach to x-ray and neutron reflection from surface films
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In a paper by Xiao-Lin Zhou et al. [Phys. Rev. A 46, 1839 (1992)] an approximate method
for dealing with one-dimensional potentials is proposed. Here, we would like to demonstrate an
alternative method that may be useful in these problems.

PACS number(s): 02.50.—r, 61.12.Bt, 68.10.—m

In [1] the reflectance and transmittance of scalar
plane waves undergoing specular reflection from a one-
dimensional potential, characterizing a surface film and
a semi-infinite substrate are considered. The method uti-
lized the Green function and different approximations
[small curvature approximation (SCA), distorted-wave
Born approximation (DWBA), and Wentzel-Kramers-
Brillouin (WKB) approximation] with some perturbation
modifications.

Here we want to show that for one-dimensional po-
tentials an alternative method exists, which seems to be
unknown to a broad portion of the scientific community
studying surface phenomena. This method is based on
splitting a potential into independent parts by infinitesi-
mal gaps with zero internal potential [2]. It is illustrated
in Fig. 1.

The infinitesimal gap does not change the physics.
This is because the tunneling through it is equal to unity.
But, it considerably simplifies the mathematics. The in-
troduction of gaps shows that every medium can be con-
sidered to be layered. For layered media there is an ap-
proach that is widely known as “invariant imbedding”
(see, for instance, [3]). The proposed method is a gener-
alization of it.

The reflection amplitude R;, of the whole potential is
represented as a function of the amplitudes of reflection,
R;, and transmission, T, of both parts (¢ = 1,2). For
the moment we will not take the width of the gap € to be
zero. Taking into account the multiple reflections inside
it, we get the relation

TZR, (1)
1 — R; R; exp(2ike)’

Ry2 = R; + exp(2ike)

where k is the wave number in vacuum.
In a similar way we obtain the transmission amplitude
T,, of the whole potential:

T\ T,

. 2
1 — Ry R; exp(2ike) )

T2 = exp(ike)

After substituting € = 0 we get

TZR, _ T
1-RiR;’ T 1-RiR;’
The reflection amplitude R, corresponds to the poten-

tial which we call here the “substrate.” It can be related,
for example, to a layer with a smooth surface or a super-

Ri2 =R, + T2 (3)
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mirror on another substrate. In all the cases we suppose
that an analytical expression for R, can be obtained [2].

The partial potentials may not be symmetrical. In that
case the reflections from the left and from the right differ
by a phase ¢, and the relations (3) take the form

312 = 7{)1 + T1ﬁ2(1 - (EI—R)Z)_I Tla (4)
T2 =T2(1 — (R_lﬁz)_l Ty, (5)

where B = R exp(i@) and T; in both directions are iden-
tical.

We can treat any potential in this manner. Moreover,
such an approach is applicable to any linear differential
equation [4, 5] of mathematical physics. The relations
are also applicable in the case when all the terms are
matrices, and this paves the way for a generalization of
the preceding formulas to the waves with any spin [6]
and, consequently, to three-dimensional space [2, 7).

We have shown how to separate the film and the sub-
strate. The latter can be composed of many different
parts. In that case the formulas (3) should be applied
several times recursively. This way we get a semiana-
lytical approach to a potential of any form. Indeed, if
one splits a potential by infinitesimal gaps in such a way
that every part can be approximated by a curve admit-
ting an analytical solution (see, for instance, [8]), then
one finds the reflection and transmission amplitudes for
every part. Then one obtains the resulting reflection and
transmission amplitudes in the form of a finite continuous
fraction [9]:

U(z)

UO 7\
/

U

A

z z 4

—
-
o

FIG. 1. Potential of a surface film on a substrate with
smooth interfaces split by an infinitesimal gap at point z.
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B=7+ f . (6)

=

With such calculations no artificial oscillations appear in
the solution.

To determine the potential by fitting the calculated re-
flection coefficient to the experimental data it may hap-
pen that it is most appropriate to first fit the partial
amplitudes, i.e., the complex parameters ¢;, ¥, and ¢;
of different parts of the potential, and after that solve
the inverse problem for every part or to find the related
parts by another fitting procedure.

When absorption can be neglected, the values ¢, 7,
and ¢ depend only on three real parameters: |r|, the

phase ¢ of r and, for example, the phase ¢; of .

Of course, formula (6) is not very useful for analytical
calculations in the case of a large number of layers. Its
utility in this case is of the same value as the utility of the
precise expressions for roots of algebraic equations of the
third and fourth order. But for numerical calculations it
has many advantages, because it gives the possibility of
using different approximations for different parts of the
potential and to treat some parts of it analytically.

For instance, such an approach has no advantage in
the case of high energy when the WKB approximation
applies. It is useful here only because of the possibility to
safely separate the effect of a known substrate instead of
dealing with DWBA. But in the case of low energies when
a perturbation or WKB approach is questionable (it is
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here that you need SCA, DWBA, and other refinements)
and if you need to specify only the parameters of some
given part of the potential, the described approach can
be of great help.

Indeed, suppose that in formula (6) parts 1,3,... are
established and one needs to specify only part 2. In that
case one finds a simple analytical dependence of the total
reflection amplitude on characteristics of the unknown
part, so one can deal directly and exclusively with it.

With respect to the widely used Parratt method [10]
(see, for instance, [11]) the one discussed here seems to
have an advantage. In the Parratt method one needs to
match the wave functions at interfaces between neighbor-
ing layers and then to solve numerically recurrent rela-
tions. The action of every layer depends on characteris-
tics of its neighbors.

In the proposed method one does not need (1) to match
the wave function (it is matched automatically) and (2)
to solve the recurrent relations. This is because (1) the
action of every layer is taken independently of all others,
as if this layer were singled out and placed in vacuum,
and (2) the recurrent relations are taken in the solved
form.

The computer experiment [12] shows that when finding
the reflection amplitude from the potential shown in Fig.
1, when it is composed of two parts described by a hy-
perbolic tangent, the proposed method consumes time of
an order of magnitude less than the Parratt method with
its step approximation and matching of wave functions
at boundaries.
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